Phase segregation in polymer thin films: Elucidations by X-ray and scanning force microscopy
نویسندگان
چکیده
– We have used quantitative X-ray microscopy in combination with Scanning Force Microscopy to monitor the phase separation of spun cast thin films of polystyrene and poly(methyl methacrylate) blends upon annealing. Both techniques complement and enhance each other in elucidating the complicated structures that develop as a function of annealing time. We have determined the composition of the mixed phases that result from solvent spin casting. We subsequently observe the sudden rearrangement into domains much smaller than those originally formed. Unique, intricate hydrodynamic mass flow patterns form during coarsening which are in qualitative agreement with recent simulations of phase segregation in two-dimensional viscous fluids. Complicated polymer-polymer interfaces persist even in the later stages that are explained in terms of the geometric constraints of a thin film and the dependance of polymer viscosity on film thickness. Thin film polymer blends have considerable technological importance and are used in numerous applications ranging from multi-color photographic printing to paints, adhesives and protective coatings. Compared to the bulk properties, less is known about the properties of blends when they are processed into thin films. Numerous studies [1-10] have shown that for binary polymer blends the spinodal decomposition and coarsening process can be more complex in thin films where various boundary conditions are imposed. Most of the recent studies of phase separation in thin films relied on various scanning force and optical microscopy methods. These methods can only probe features that vary in topography, mechanical properties or have large differences in reflectivity, and hence these studies have mostly concentrated on () E-mail: Harald [email protected]
منابع مشابه
Band-Gap Tuning Of Electron Beam Evaporated Cds Thin Films
The effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated CdS thin films have been investigated. CdS thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and Atomic Force Microscopy were used to character...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملFuture MISFET gate dielectric: NiO/PVA Nanohybride composites
This paper has reported on the electrical and nonstructural of polymer-based materials in corporation NiO (Nickel oxide) in concentrations of 0.2%, 0.4% and 0.8% by weight of PVA (polyvinyl alcohol) polymer. Nanocrystallites phases and properties were characterized with using X-ray diffraction (XRD), Fourier transfer infrared radiation (FTIR),Energy distribution X-ray(EDX) techniques and X-Map ...
متن کاملFabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique
Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999